B.5 Linear Functions

1

Essential Question How can you describe the graph of an

equation of the form y = mx + b?

Your score on a test is usually a **function** of how much you study. If you study a lot, your score is usually high. If you study a little, your score is usually low.

ACTIVITY: Using an Input-Output Table

Work with a partner.

a. Copy and complete the input-output table for the equation $y = -\frac{1}{2}x + 2$.

Input, <i>x</i>	-3	-2	-1	0	1	2	3
Output, y							

b. Plot the points from the table.

- **c.** Describe the pattern of the points. Draw a graph that represents the pattern.
- **d.** Choose three values of *x* that are not in the table. Find their corresponding *y*-values and plot the points. Do the points lie on the graph you made in part (c)?

Inductive Reasoning

Work with a partner. Sketch the graph of each equation. Then copy and complete the table.

	Equation	Description of Graph	Point of Intersection with y-axis	Slope of Graph
1	2. $y = -\frac{1}{2}x + 2$	Line	(0, 2)	$-\frac{1}{2}$
	3. $y = -x + 2$			
	4. $y = -x + 1$			
	5. $y = -\frac{1}{2}x + 1$			
	6. $y = x + 1$			
	7. $y = x - 1$			
	8. $y = \frac{1}{2}x - 1$			
	9. $y = \frac{1}{2}x + 1$			
	10. $y = 2x + 1$			
	11. $y = 2x - 2$			
	12. $y = -2x + 3$			

What Is Your Answer?

- **13.** IN YOUR OWN WORDS How can you describe the graph of an equation of the form y = mx + b?
 - **a.** How does the value of *m* affect the graph?
 - **b.** How does the value of *b* affect the graph?
 - **c.** Test your answers to parts (a) and (b) with three equations that are not in the table.
- 14. Why is an equation of the form y = mx + b called a linear function? What does the word *linear* mean? What does the word *function* mean?

Practice

Use what you learned about linear functions to complete Exercises 12–17 on page A40.

B.5 Lesson

x

EXAMPLE

Common Error

The *y*-intercept of y = -x - 5 is not 5. Be sure to write equations in the form

y = mx + b.

1

Identifying Slopes and y-Intercepts

Find the slope and *y*-intercept of the graph of each function.

a.	y = -x - 5				
	y = -1x + (-5)	Write in slope-intercept form.			
	: The slope is -1 and the <i>y</i> -intercept is -5 .				
b.	$y - 2 = -\frac{1}{3}x$				
	$y = -\frac{1}{3}x + 2$	Add 2 to each side.			
	\therefore The slope is $-\frac{1}{3}$ and the	<i>y</i> -intercept is 2.			
c.	4y - 5x = 12				
	4y = 5x + 12	Add 5x to each side.			
	$y = \frac{5}{4}x + 3$	Divide each side by 4.			
: The slope is $\frac{5}{4}$ and the <i>y</i> -intercept is 3.					

EXAMPLE 2 Graphing Lines Using Slope-Intercept Form

a. Graph y = -2x + 3.

Step 1: Find the slope and *y*-intercept.

Step 2: The *y*-intercept is 3. So, plot (0, 3).

Step 3: Find the rise and the run.

slope =
$$\frac{\text{rise}}{\text{run}} = \frac{-2}{1}$$

Step 4: Plot the point that is 1 unit right and 2 units down from (0, 3).

Step 5: Draw a line through the two points.

b. Graph
$$y = \frac{2}{3}x - 2$$

Step 1: Find the slope and *y*-intercept.

$$y = \frac{2}{3}x + (-2)$$
slope
y-intercept

Step 2: The *y*-intercept is -2. So, plot (0, -2).

Step 3: Find the rise and the run.

slope =
$$\frac{\text{rise}}{\text{run}} = \frac{2}{3}$$

Step 4: Plot the point that is 3 units right and 2 units up from (0, -2).

Step 5: Draw a line through the two points.

On Your Own

Graph the linear function using slope-intercept form.

3.
$$y = -x -$$

1

4.
$$y = \frac{3}{2}x - 5$$

Now You're Ready

Exercises 12-23

B.5 Exercises

Vocabulary and Concept Check

- **1. VOCABULARY** What is the *y*-intercept of a line?
- **2.** WRITING Why is y = mx + b called the slope-intercept form of a line?

MATCHING Match the linear function with its graph.

Practice and Problem Solving

Find the slope and *y*-intercept of the graph of the linear function.

1 6. y = 4x + 1 **7**. y = -2x + 6 **8**. $y = \frac{2}{3}x - 3$ **9**. 5x + y = 3 **10**. 9x - 3y = 24**11**. -4y + 10x = 36

Graph the linear function using slope-intercept form.

2 12. y = 3x - 315. $y = -\frac{3}{2}x - 1$ 18. y = -4x + 1

21. 5y - 4x = -15

13. $y = 2x + 5$	14. $y = -x + 4$
16. $y = -\frac{1}{5}x + 2$	17. $y = \frac{1}{4}x - 4$
19. $y = 6x - 5$	20. $y = -3x - 2$
22. $5x + 3y = -6$	23. $3x + 4y = 12$

24. ERROR ANALYSIS Describe and correct the error in graphing the linear

function
$$y = \frac{1}{4}x - 1$$

25. CARTOONIST The number *c* of cartoons a cartoonist plans to complete by the *n*th day of the month is given by c = 24 + 4n. What does the *y*-intercept represent?

Write an equation of the linear function in slope-intercept form.

- **29. PERIMETER** The perimeter of the rectangle can be modeled by the linear function y = 2x + 7.
 - **a.** Find the slope and *y*-intercept of the graph of the linear function.
 - **b.** Graph the linear function.

- **c.** Is it possible for the rectangle to have a perimeter of 5 units? Examine the graph and explain.
 - **30. ESCALATOR** To get from the second floor to the first floor in a mall, you can either ride the escalator or take the stairs. The graph shows the vertical distance *y* (in feet) you have left to travel on the escalator after *x* seconds.
 - **a.** Write an equation in slope-intercept form of the linear function representing the amount of time you have left on the escalator.
 - **b.** How long does it take to ride the escalator from the second floor to the first floor?
 - **c.** The equation y = -1.6x + 20 represents the vertical distance *y* (in feet) you have left to travel on the stairs after *x* seconds. How much time do you save by taking the stairs?
- 30 25 20 15 10 5 (20, 20) (0, 20) (20, 20) (20, 0) (20, 0) (20, 0) (20, 0) (20, 0) (20, 0) (20, 20)
- **31.** Reasoning: Find the slope and *y*-intercept of the graph of Ax + By = C in terms of *A*, *B*, and *C*.

Fair Game Review what you learned in previous grades & lessons

Solve the equation.

32.	3x - 6 = 9 - 2x	33. $5 - 8v = 3v$	$-\frac{1}{2}$ 3	4. $-5w - 4 = 4(w - 7)$
35.	MULTIPLE CHOICE Wh a circle graph?	ich does <i>not</i> describe tl	ne sum of the sec	tions of
	(A) $\frac{1}{2}$	B 1	C 100%	D 360°